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FET Statistical Modeling Using
Parameter Orthogonalization

Jim Carroll, Kerri Whelan, Sam Prichett, and Daren R. Bridges

Abstract—A new method for representing the statistical varia-
tion of FET equivalent circuit parameters (ECP’s) is presented.
This method utilizes a statistical technique known as principal
components and provides an efficient method for statistically
representing the means, standard deviations, and correlations
of the FET ECP’s. The technique can easily be implemented
into commercial CAD simulators resulting in FET variation
simulations that are more accurate than existing methods. Appro-
priate statistical tests for determination of equivalence between
simulated and measured FET parameter distributions is also
discussed. Both the modeling methodology and statistical testing
were demonstrated using both scattering and noise parameters
for 300 ym low-noise GaAs FET’s.

1. INTRODUCTION

TATISTICAL CIRCUIT modeling has shown increasing

popularity with microwave circuit designers during the last
few years [1]. This is due to the incorporation of statistical
yield analysis and optimization into commercial computer-
aided design (CAD) programs. Statistical modeling allows
the microwave engineer to evaluate circuits on the basis of
their producibility as well as good electrical performance. This
results in more reliable, higher yielding products which are
more commercially competitive.

The foundation for most CAD yield analysis and opti-
mization tools is the Monte Carlo method [1]. It is well
known that all circuit parameters vary randomly around their
nominal, or “designed,” values due to fluctuations inherent to
the production of the circuit. These fluctuations are due to each
component’s intrinsic tolerance which is governed by techno-
logical and cost considerations. For example, GaAs microstrip
may be designed to be 75 pym wide but may vary +2.5 pm
due to gold plating limitations. The random fluctuations in
the circuit components causes a corresponding variation in
the circuit response. Commercial microwave CAD packages
use the Monte Carlo technique to model these processing
fluctuations as statistically independent, random variables in
order to predict how the circuit will respond. However, many
fluctuations within a circuit cannot be expressed in the form of
independent random variables. A common and very influential
example of correlated variables in microwave circuit modeling
are the small signal FET model parameters [2].
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Fig. 1. Small signal model including intrinsic, extrinsic resistances, and
noise elements.

Fig. 1 illustrates a conventional small signal FET model for
noise and S-parameter characteristics over frequency [3]. The
model gives reasonable results for small signal conditions by
including the intrinsic, some extrinsic, and noise parameters.
The model’s main strength is its compactness and ease of
use in the CAD modeling environment. The potential for FET
parameter scalability is also an advantage which cannot be ig-
nored [4]. However, the small signal FET ECP’s are described
by highly correlated multivariate distributions [2] and therefore
cannot be easily implemented in existing commercial CAD
software for Monte Carlo simulation. Some designers have
tried to model the FET parameters as independent random
variables with mixed success [2], [5], and [6]. Due to the
physical correlations existing between FET parameters this
modeling scheme, referred to as the plus-minus sigma (o)
model, can often result in physically impossible FET parameter
combinations during a Monte Carlo simulation. This situation
is undesirable if truly accurate CAD yield predictions are
required.

In order to remedy the shortcomings of the correlated
FET parameters the Truth Model has been suggested in [5]
and [7] and successfully implemented into commercial CAD
packages [8]. This method is simple and inherently creates
the orthogonality of random variables that the Monte Carlo
method requires. In fact, the Truth Model can be thought of
as making the entire FET one random variable picked from
an S-parameter database during the Monte Carlo simulation.
However, large S-parameter databases are needed to cover
all of the frequency ranges and bias conditions necessary
for accurate statistical modeling. The Truth Model is not
compact and cannot be scaled to different FET sizes as can
the small signal FET model. Also, the randomness of Monte
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Carlo samples is severely limited by the size of the S-
parameter database. Campbell ef al. have suggested database
interpolation in order to reduce the impact of this limitation.
However, this interpolation results in an even larger database
for random FET selections [9] and does not solve the inherent
problem. Finally, S-parameter database access time must be
considered for a large number of Monte Carlo simulations. In
summary, although the Truth Model is accurate, it limits the
economic feasibility of statistical design due to complexity,
database requirements, and computational inefficiencies.

Purviance et al. suggested statistically characterizing FET’s
through the use of a principal component analysis of the
S-parameters database [10]. This solution has many of the
disadvantages of the Truth Model the most important of which
is the large database needed for the statistical modeling at
different frequencies, FET sizes, and biases. However, it will
be shown herein that the principal component technique can
also be applied to the small-signal FET parameters to obtain an
accurate and compact statistical model for circuit simulation
of both noise and S-parameters.

This paper proposes application of the principal compo-
nents statistical technique to a small signal FET equivalent
circuit parameter database. We will show that the correlated
parameters can be easily expressed in terms of uncorrelated
random variables suitable for Monte Carlo analysis. The FET
parameter’s means, standard deviations, and correlations will
be shown to be preserved during a Monte Carlo simulation. An
example of the methodology will be presented for a population
of 300 um low-noise GaAs FET’s by incorporation of the
principal component technique into a currently available CAD
microwave simulator. Statistical tests presented in this paper
will be used to verify the improvement of simulated FET noise
and S-parameters over the traditional ¢ model.

II. PRINCIPAL COMPONENTS

Principal component analysis is a well-known statistical
technique by which a sample data set of n correlated variables
are linearly transformed into a new data set of n uncorrelated,
or orthogonal, variables called principal components [11].
Statistically, correlation is defined as the linear relationship
between two or more variables. Essentially, the principal
component technique rotates the variable axes in order to
obtain data with no linear relationships. Fig. 2(a) shows a
set of data points which obviously have a strong positive
linear relationship which respect to the X and Y coordinate
system. Principal components effectively rotates the axes to
produce a new coordinate system described by F'1 and F2.
The data in Fig. 2(b) is uncorrelated when referenced to this
new coordinate system. The same concept can be applied
to an n-dimensional coordinate system of a sample data set
resulting in a new n-dimensional data set referenced to the
orthogonal principal component axes. Mathematically, this
rotation is achieved by determining the eigenvalues of the nxn
correlation matrix of a sample data set. Equation (1) shows
the vector E containing the FET parameter variables from
Fig. 1, the vector F which contains the orthogonal principal
components, A the diagonal eigenvalue matrix, and U a matrix

(a) (®)

Fig. 2. Rotation of principal axis by the principal component technique on
a correlated data set.

determined by the eigenvalues and original data. AU s
referred to as the factor pattern matrix because it contains the
coefficients that will be multiplied by the principal components
(factors) to reproduce the original data.

E=AU"'F. 1)

One of the interesting aspects of the principal components
technique is that the first eigenvalue, which corresponds to the
first factor, is the largest since it is oriented in the direction
responsible for most variation in the original data set. The
second eigenvalue is the second largest because it is oriented,
orthogonal to the first, in the direction responsible for the
most of the remaining variation in the original data set. This
continues until the nth eigenvalue explains the remaining
variation. Using all n factors will describe all of the variation
present in the original data. By using the inverse transform of
(1) on each of the extracted FET parameters it is possible to
derive a new data set which is completely orthogonal. Each of
the new uncorrelated variables will be standardized according
to (2) where T is the original data’s mean and s, is the sample
standard deviation. In other words, the principal component
variables have a mean of zero and standard deviation of one.
By using the standardized uncorrelated data set in (1), the
linear combination of the principal factors will produce the
original data in standardized form. To restore the original FET
parameters from a standardized data point z must be solved
for in (2).

r—=x

03

Tstandardized =
Sz

Most commercial statistical analysis packages will perform
the principal component analysis on a data set. One such
commercial statistical analysis package, SAS, will determine
the new uncorrelated data set from an original data set,
calculate the eigenvalues, cumulative variation explained by
each of the new orthogonal factors, as well as the coefficients
contained in the factor pattern matrix [12]. SAS can also be
used to compute the means and standard deviations needed
to restore the original FET parameters from the principal
components.

Notice that no assumptions have been made of the original
data’s distributions. We may use the new orthogonal data set
as it stands. However, if the original data follows a normal
(Gaussian) distribution, the principal components will also
have a Gaussian distribution because a linear combination of
Gaussian distributions will be a Gaussian distribution. Each
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TABLE I
COMMON MICROWAVE CIRCUIT STATISTICAL TESTS AND THEIR ASSOCIATED CUMULATIVE ERROR LEVELS

Pairwise o Level
Experimentwise Intrinsic FET Model S-parameters (2-Port)
Significance 7 means or 21 correlation 8 means or 28 correlations
Level standard coefficients standard coefficients
deviations deviations
X umitatee = 0-05 0.0079 0.0024 0.0064 0.0018
X tatve. = 0-075 0.0111 0.0037 0.0097 0.0028
X pioive = 0-10 0.0149 0.0050 0.0130 0.0038
O pmgaios = 015 0.0229 0.0077 0.0201 0.0058

original FET parameter should be checked for this normality
assumption by a statistical test. If the original data has a Gauss-
ian distribution, or one can be obtained by data transformation,
the derived principal components can be defined as having a
standardized Gaussian distribution with a mean of zero and
standard deviation of one. Equations can then be used to
define the original data variables as a function of the principal
components. This produces automatic interpolation of the
original FET parameter database by simulating combinations
of FET parameters that retain the correlations determined from
the measured data but were never actually measured.

III. STATISTICAL EQUIVALENCE TESTING

Population equivalence testing needs to be done after per-
forming the principal component analysis on the FET ECP
database in order to confirm statistical model accuracy. In the
past, there has been a serious lack of statistical rigor where
modeling examples were shown to “agree well with” [13] or
have “excellent” comparisons [9]. These comparisons of data
are qualitative in nature and subjective at best. This section
discusses the statistical tools that are available to determine
a quantitative level of statistical accuracy when comparing
measured and simulated microwave circuit populations.

There are two types of tests that can be applied to mul-
tivariate populations to determine some level of statistical
equivalence. First, a multivariate distribution test can be used
to determine if two populations are equivalent [14]. This test
is the most accurate but unfortunately not commonly incorpo-
rated into many commercial statistical packages. The second
method is using pair-wise comparisons of each variable’s
marginal density distribution. This does not provide sufficient
conditions for multivariate statistical equivalence [15] except
in the case of the multivariate Gaussian distribution. How-
ever, the pair-wise testing is useful even for non-Gaussian
distributions because it can help identify which variables
of two multivariate distributions are not statistically equal.
Pair-wise testing of the distribution parameters can be easily
achieved with the help of commercial statistical packages in
the absence of a true multivariate distribution equivalence test.
Most statistical texts cover pair-wise statistical testing [16].
The application of these tests to the more common microwave
populations such as S-parameter data sets or ECP sets will be
briefly described here.

Each statistical equivalency test is performed at a predeter-
mined significance level («) which is the probability of finding
a difference between population statistics when there really is
none. The person performing the test usually wants to keep this
probability quite low, typically 0.05 to 0.1. Unfortunately, if a
population has many different statistics to test, the probability
of making an error accumulates according to (3) where “m”
is the number of variables being pairwise tested

3

For example, suppose a comparison of the means of two
sample sets of S-parameters were to be made. There are four
parameters, S11,512,521, and 522, each with a real and
imaginary part. There will be eight means that would need
to be compared to conclude statistical equivalence. In order
to keep the cumulative error small of the entire statistical test,
each pairwise « level must be very low. In fact, the cumulative
error would be 0.57 if each test is performed at an o = 0.1
level. That is, there would be a 57% chance of making an error
if the S-parameter populations were found to be equivalent. If
the pairwise comparisons were made at a o = 0.013 level then
the cumulative error would be 0.1 which is more acceptable.

Table I shows a compilation of suggested pairwise o levels
and their corresponding cumulative o for different types of
equivalence testing which are of special interest to microwave
circuits. Significance levels for smaller or larger FET models
or different size S-parameter networks may be derived in a
similar fashion with (3). It can be seen that very low a-level
pair-wise comparisons need to be made in order to keep the
cumulative error low on any statistical tests.

— m
Ccumulative = 1- (1 — Olpairwise) .

IV. FET PARAMETER ORTHOGONALIZATION

This section illustrates the application of the Principal Com-
ponent technique to statistical FET modeling. The methodol-
ogy shown in Fig. 3 was applied to FET’s produced in 1993 at
the Texas Instruments GaAs Foundry in Dallas, TX. Each FET
had four gate fingers and a total periphery of 300 pm. Fifty-
four FET’s were used from six 100 pm thick GaAs wafers
‘with low-noise doping profiles. Normally. a sample size of
only 54 FET’s would be considered small for characterizing
a FET population. However, the purpose of the study was to
prove the usefulness of this statistical modeling methodology.
Scattering and noise parameter measurements were obtained
over the 0.5 to 26.5 GHz range at 0.5 GHz step intervals at
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TABLE 1I
MEAN AND STANDARD DEVIATION OF EXTRACTED AND SIMULATED FET PARAMETERS
Mean Standard Deviation

Extracted P.C. +o Extracted P.C. +o
Gm (mS)| 92.335 92.152 92.195 5.251 5.160 5.153
Cgs (fF) | 389.909 | 388.341 | 388.401 28.007 27.178 27.230
Ri () 2.594 2.600 2.598 0.312 0314 0.302
Cds (fF) | 79.178 79.219 79.217 2.762 2.696 2.757
Rds (Q)) | 150.393 | 149.724 | 150.302 10.955 10.759 10.719
Cegd (fF) | 32.207 32.213 32.147 3.169 3.148 3.202
Tau (ps) 2.520 2.513 2.524 0.224 0.220 0.221
Rg(Q) | 0391 0.395 0.393 0.057 0.056 0.058
Rs () 2.539 2.538 2.547 0.190 0.181 0.191
Rd (Q) 3.678 3.676 3.682 0.173 0.170 0.174
Vn 0.050 0.050 0.050 0.004 0.004 0.004
In 704.704 | 702.277 | 708.548 98.364 97.213 96.316
ReCorr -3.088 -3.083 -3.093 0.167 0.163 0.172
ImCorr -0.286 -0.290 -0.282 0.173 0.171 0.175
Rgs (€2) | 12388.0 | 12485.0 | 12348.2 2875.1 2821.5 2874.6
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Fig. 3. Statistical modeling methodology flow chart.

the drain bias level of 3 V and 30 mA. Each FET’s measured
responses were used to extract the ECP values shown in Fig. 1.
The ten intrinsic and extrinsic parameter values were obtained
by analytical extraction of the FET parameters for each set of
S-parameters similar to Anholt ef al. [6] and Golio [17]. The
five noise parameters, including R, shown in the Fig. 1 were
obtained by analytical extraction using the Hybrid-Pi noise
model [3]. All ECP’s were optimized to obtain a better fit to
the individual FET measurements. Table II shows the mean
and standard deviation values for all of the fifteen extracted
ECP’s.

All of the FET models were extracted and the commer-
cial statistical analysis package SAS was used to determine
the mean, standard deviation, and correlation matrix of the
FET parameters. Table III shows the extracted database’s
correlation matrix with the statistically nonsignificant values
shaded. Fifty-nine of the 105 correlation coefficients have
a nonzero value when each was tested at an o 0.05
significance level. This strongly suggests the assumption of
variable independence inherent to a Monte Carlo analysis
would be violated. SAS was then used to determine the
values in the factor pattern matrix shown in Table IV. The

coefficients in the factor pattern matrix were multiplied by
the principal component vector as shown in (1) to produce
an equation for each of the FET ECP’s. Each of the FET
parameters derived from (1) can be placed in the equation
block of a commercial CAD package such as Touchstone [8].
For example, the resulting expression for G, is provided in
(4) where Z¢,, is the mean and s, is the standard deviation
of the measured G,,, sample. Of course, the expression for G,
can then be scaled to the desired FET periphery [4]

G =2a,, + Sq,, *(0.808 % F1 4+ 0.412 x F'2
—0.006 « F'3 — 0.050 « F'4 + 0.323 % F'5
—0.154 % F'6 4 0.020 « F'7T + 0.040 x F'S
+0.149 % F'9 4 0.028 x F10 — 0.134 * F11
—0.003 % F'12 + 0.036 « F'13 + 0.0216 = F'14

+0.034 * F'15). 4)

Fig. 4 shows the distribution of G, values for the extracted
database. The distribution seems to follow a Gaussian distri-
bution although with just 54 samples the shape is not clearly
defined. However, G,,, along with all the other ECP variables
each passed a statistical Shapiro-Wilk normality test at an
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TABLE 1II >
EXTRACTED FET PARAMETERS CORRELATION COEFFICIENTS WITH STATISTICALLY NONSIGNIFICANT VALUES SHADED

Rgs|{ Im | Re
Corr

Corr

Gm

-0.39

1.00

1.00

TABLE IV
PrinCIPAL COMPONENT FACTOR PATTERN MATRIX EXPLAINING 96.6% OF TOTAL FET PARAMETER VARIATION

Factor 7

Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 Factor 8
Gm 0.808 0412 | -0.006 | -0.050 | 0.323 | -0.154 | 0.020 0.040
Cgs 0.046 0.822 | -0.115 | 0.142 0.251 -0.009 | -0.056 | -0.025
Ri -0.493 | 0309 | 0579 | -0.463 | -0.030 | 0.158 | -0.129 | -0.312
Cds 0386 | -0.425 | 0.559 0.110 0.266 0.202 0.363 | -0.313
Rds -0.183 | 0.850 | -0.177 | 0.317 | -0.054 | 0.185 | -0.079 | -0.227
Cgd 0.854 | -0.232 | -0.275 | -0.181 | -0.251 | -0.071 0.015 | -0.028
Tau -0.383 | 0.862 0.144 | -0.026 | 0.088 0.103 | -0.219 | 0.068
Rg -0.729 | -0.513 | 0.323 | -0.095 | 0.179 | -0.109 | -0.031 0.144
Rs 0.639 0.073 0.649 0.169 0.093 0.123 | -0.073 | 0.174
Rd 0.50 -0.082 | 0.582 0.661 -0.289 | -0.297 | -0.153 | 0.004
Vn -0.853 | 0.252 0.040 0012 | -0.296 | 0.023 0.168 | -0.176
In 0.956 0013 | -0.095 | -0.025 | -0.166 | -0.040 | 0.000 | -0.044
ReCorr | -0.741 0.106 | -0.245 | 0.182 0314 | -0422 | 0.184 | -0.033
ImCorr | 0.015 0.735 0.138 0.002 | -0.205 | 0.030 0.560 0.279
Rgs -0.289 | -0.488 | -0.410 | 0.464 0.100 0.466 0.011 0.177

a = 0.05 level of significance [18]. This indicates that the
principal components will also follow a Gaussian distribution.
Therefore, the variables F'1 through F'15 were defined in the
Touchstone “variables” block to have a normal distribution
with mean zero and standard deviation of one [8]. Notice when
the statistical mode of the CAD package is not being used, that
F1 through F'15 will be at their nominal value, i.e., zero, and
G, will equal the mean of the entire FET sample. Also, the
sum of the squares of the principal factor coefficients is equal
to one which forces the standard deviation of G,, to be Se,.
during the Monte Carlo simulation.

The entire factor pattern matrix was used in (1) to im-
plement all the FET parameters in terms of the principal
component variables F'1 through F'15. One thousand samples
were simulated using the Monte Carlo method on the principal

factors and the simulated FET parameters were statistically
analyzed. For comparison, 1000 samples were also simulated
using only the FET parameter’s mean and standard deviation
which assumes independence of the FET parameters (fo
method). Table II shows the means and standard deviations of
the extracted FET parameters, the principal component model
(P.C.) results, and o model. Both the principal component
model and the +¢ model are able to accurately reproduce the
mean and standard deviations of the extracted FET parameters.
In fact, both models produced means and standard deviations
statistically equivalent to the original data with a cumulative
a = 0.1 level of error.

A representative example of correlation recovery for the
principal component model, £ model, and the extracted
data is shown in Fig. 5 for the correlation of Cys with the
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with other FET ECP’s.

other FET ECP’s. Fig. 5 demonstrates the principal compo-
nent method recovered all of the measured Cg correlations.
Pairwise statistical tests verified that all 105 measured and
principal component simulated correlations were statistically
equivalent at a cumulative a = 0.1 level of error. Fig. 5
illustrates the findings of these statistical tests including the
fact that the £¢ method is not capable of modeling the FET
parameter correlations because of the parameter independence
assumption. Therefore, the o method results in simulation
of impossible FET parameter combinations during the Monte
Carlo simulations. These examples show that principal com-
ponents is a superior technique for accurate modeling of FET
ECP statistical variations. Also, it was shown how easily and
quickly the principal component model equations could be
implemented into current commercial CAD products.

Fig. 6 shows that a larger portion of the total variation found
in the original FET database is explained as the number of
Principal Factors used in the model are increased. One hundred
percent of the total variation is represented when the number
of Principal Factors equals the number of original variables.
Notice that the first nine factors explain 97.9% of the total
cumulative variation in the FET parameters. This creates the
potential to eliminate some of the less significant principal
factors to produce a more compact model for each of the
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Fig. 6. Percent of FET variation explained as number of principal factors
considered in model increases.
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Fig. 7. Comparison of principal component model complexity correlation of
Gm and RZ‘.

FET parameters [10]. To see how the number of principal
component terms affect the model’s correlation coefficients,
the number of factors in the G, principal component model
was varied from all 15 to just the first principal component
factor for a 1000 run Monte Carlo. Fig. 7 illustrates the large
error possible for the simulated correlation coefficient between
G, and R; when only a few principal factors are used. As
the number of principal factors is increased the error decreases
until it is statistically negligible. Notice that the error for this
particular correlation coefficient is not strictly monotonic. The
graph also shows the correlation can be adequately preserved
with just nine factors instead of the original fifteen. Reducing
the principal factors in the FET parameter statistical model can
greatly decrease the complexity of the principal component
model for the FET parameters. The number of terms in (4)
could be decreased by approximately 36% using only factors
F1 through F9. A smaller, less complex statistic model
has many benefits such as easier implementation and faster
simulation time.

The 15 ECP principal component equations were used in
the FET model shown in Fig. 1 during a 500 run Monte Carlo
simulation. The S-parameters from each run were stored in a
S-parameter database and were used in comparison with the
original measured S-parameter database to verify statistical
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equivalence. Pairwise comparisons were made on the real
and imaginary parts of the S-parameters and noise parameters
which included R,,, Fiin, and the real and imaginary part of
T'ops. All the measured and principal component simulated
FET response means and standard deviations tested equiva-
lent with an o = 0.05 cumulative error. Fig. 8 depicts the
correlation coefficient recovery for the measured and simulated
FET real part of S21. Fig. 9 illustrates the same for the
imaginary part of the FET’s S21. The other FET reponses are
similar to Figs. 8 and 9 in that the principal component model
recovers the correlation coefficients fairly well. Equivalence
tests between measured and simulated FET responses with
a pairwise a = 0.05 level of error showed that 54 of the
66 FET response correlations coefficients were statistically
equal. Of those which failed equivalence, only two produced
simulated correlation coefficients that were opposite in sign as
the measured values.

A 500 run Monte Carlo simulation was also done using
the traditional +¢ method for a comparison with the prin-
cipal component method. The measured and simulated FET
response means and standard deviations tested equivalent with
a a = 0.05 cumulative error level. Figs. 8 and 9 show
the correlation coefficient recovery for the o method as
compared to the measured and principal component data. Both
graphs illustrate that the 4o model produces more signifi-
cantly different correlation coefficients than does the principal
component method. In fact, only 22 out of the 66 correlation
coefficients tested equivalent at an o = 0.05 level of error for
the o method of FET response simulation. Therefore, the
+o model produced almost four times as many significantly
different correlation coefficients than the principal component
method. Of the significantly different correlation coefficients,
21 had a sign opposite to that obtained from the measured
FET response database. This means the +¢ method was over
three times more likely to produce an incorrect sign for those
correlation coefficients that were significantly different. Both
methods, +o and principal components, failed the cumulative
pair-wise equivalence tests between measured and simulated
FET response correlation coefficients and are therefore not

Correlation Coefficient

-1 ;

Re(S11) iae(smi im(smf %m(szzj' ;ke(csogé -
Im{S11 Re(812) Re(S22y NFmin im{Goph)
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]m Measured [ ]P.C. - Sigma [

Fig. 9. Comparison of measured and simulated correlation coefficients:
Correlation of imaginary part of 521 with other FET responses.

statistically equal to the original measured database. However,
it has been shown the principal component method is much
more accurate at simulating the measured database than the
+o0 model.

There are several reasons why the principal component
model fell short of the goal to produce a statistically equivalent
simulated database. First, there may be inadequate modeling
of the individual FET’s. This may have been caused by not
including the extrinsic inductances in the FET model. The
model optimization during ECP extraction may have also
introduced inaccuracies during the ECP extraction due to local
minima in the error functions. This extraction error could
be indicated by the large percentage variances exhibited by
Ry, Rgs, R;, In, and Im_Corr ail of which have been found
to be difficult to extract. Anholt er al. make an excellent
case suggesting that the quality of the statistical modeling of
the FET is limited by the accuracy of the extraction method
[6]. It is also possible that some of the ECP’s exhibited a
nonlinear relation which would cause errors when modeling
the relation using a correlation coefficient. Correlation " is
defined as the linear relation between two variables and cannot
accurately account for nonlinear relationships. This possibility
was examined by producing scatter plots for all the FET ECP
like shown in Fig. 10 for G,, and T,,. It might be inferred
from Fig. 10 that there is a strong quadratic relationship
present even though the correlation coefficient of 0.05 is
quite low. Quantifying these nonlinear relations is beyond
the scope of this paper but is a problem that will need to
be overcome. Finally, nonnormal distributions for the FET
ECP’s may also be a definite problem because of the Gaussian
assumption during the simulation of the Principal Factors.
Normally, this problem could be diminished through the use
of data transformations to get a more Gaussian distribution.
However, the data presented in this paper covered two different
lots of wafers which caused some of the FET ECP’s to have
distributions that could have been bi-modal. Larger number
of FET samples would be needed to accurately test for this
possibility. Bi-modal distributions may be caused by process
shifts that will be hard, if not impossible, to model.
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Fig. 10. Scatter plot of Gy, and Thu: correlation coefficient = 0.05.

V. OTHER APPLICATIONS

FET parameter orthogonalization has also been shown to
pose a better conditioned model fitting problem [19]. Known
correlations between the extracted FET parameters can be
forced on a FET model optimization by using the principal
component equations. Historical FET data or physics based
models could be used for these known correlations. Principal
components can also be applied to design of experiments
(DoE) which requires orthogonal variables. The ability to
reduce the model into a fewer number of principal factors
than the original FET parameters will enhance the usefulness
of FET variation modeling in DoE. Also, statistical population
modeling could be used as a criteria to monitor the validity of
active device parameter extraction. Once a population of FET’s
have been modeled, the methodology illustrated in Fig. 3
could be implemented to model the statistical FET electrical
responses and compare them to the original database. Creating
a statistically equivalent simulated population to a measured
database is much harder modeling problem than representation
of a single active device. Failure to successfully model the
measured FET population could point out processing shifts,
erroneous/nonphysical extraction, or an inadequate electrical
model.

VI. CONCLUSION

Many of the prior works in statistical modeling of FET
S-parameters are difficult to implement into current CAD
software or are inaccurate in representing the FET population
during Monte Carlo simulations. A new methodology for
statistically modeling the extracted small signal FET param-
eters was developed and demonstrated. This method uses the
principal component technique to orthogonalize the extracted
FET parameters into a new set of variables called Principal
Factors. Equations for the extracted FET parameters can
then be written in terms of a linear combination of the
orthogonal principal components and easily implemented into
current commercial CAD software. The modeling approach
was demonstrated on a small sample of 300 um GaAs FET’s
and was statistically tested using techniques discussed in this
paper. The principal component methodology was shown to

preserve the extracted FET ECP’s mean, standard deviation,
and parameter correlations of a high level of statistical sig-
nificance. Using the methodology significantly improved the
ability to statistically model measured S-parameter and noise
FET populations as compared to the assumption of ECP
independence.
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