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FET Statistical Modeling Using

Parameter Orthogonalization
Jim Carroll, Kerri Whelan, Sam

Abstract-A new method for representing the statistical varia-

tion of FET equivalent circuit parameters (ECP’S) is presented,
This method utilizes a statistical technique known as principal
components and provides an efficient method for statistically
representing the means, standard deviations, and correlations
of the FET ECP’S. The technique can easily be implemented
into commercial CAD simulators resulting in FET variation

simulations that are more accurate than existing methods. Appro-
priate statistical tests for determination of equivalence between

simulated and measured FET parameter distributions is also
discussed. Both the modeling methodology and statistical testing

were demonstrated using both scattering and noise parameters

for 300 ~m low-noise GaAs FET’s.

I. INTRODUCTION

STATISTICAL CIRCUIT modeling has shown increasing

popularity with microwave circuit designers during the last

few years [1]. This is due to the incorporation of statistical

yield analysis and optimization into commercial computer-

aided design (CAD) programs. Statistical modeling allows

the microwave engineer to evaluate circuits on the basis of

their producibility as well as good electrical performance. This

results in more reliable, higher yielding products which are

more commercially competitive.

The foundation for most CAD yield analysis and opti-

mization tools is the Monte Carlo method [1]. It is well

known that all circuit parameters vary randomly around their

nominal, or “designed,” values due to fluctuations inherent to

the production of the circuit. These fluctuations are due to each

component’s intrinsic tolerance which is governed by techno-

logical and cost considerations. For example, GaAs microstrip

may be designed to be 75 ~m wide but may vary +2.5 ,um

due to gold plating limitations. The random fluctuations in

the circuit components causes a corresponding variation in

the circuit response. Commercial microwave CAD packages

use the Monte Carlo technique to model these processing

fluctuations as statistically independent, random variables in

order to predict how the circuit will respond. However, many

fluctuations within a circuit cannot be expressed in the form of

independent random variables. A common and very influential

example of correlated variables in microwave circuit modeling

are the small signal FET model parameters [2].
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Fig. 1. Small sigrrat model including intrinsic, extrinsic resistances, and
noise elements.

Fig. 1 illustrates a conventional small signal FET model for

noise and S-parameter characteristics over frequency [3]. The

model gives reasonable results for small signal conditions by

including the intrinsic, some extrinsic, and noise parameters.

The model’s main strength is its compactness and ease of

use in the CAD modeling environment. The potential for FET

parameter scalability is also an advantage which cannot be ig-

nored [4]. However, the small signal FET ECP’s are described

by highly correlated multivariate distributions [2] and therefore

cannot be easily implemented in existing commercial CAD

software for Monte Carlo simulation. Some designers have

tried to model the FET parameters a:s independent random

variables with mixed success [2], [5], and [6]. Due to the

physical correlations existing between FET parameters this

modeling scheme, referred to as the plus-minus sigma (*m)

model, can often result in physically impossible EET parameter

combinations during a Monte Carlo simulation. This situation

is undesirable if truly accurate CAD yield predictions are

required.

In order to remedy the shortcomings of the correlated

FET parameters the Truth Model has been suggested in [5]

and [7] and successfully implemented into commercial CAD

packages [8]. This method is simple and inherently creates

the orthogonality of random variables that the Monte Carlo

method requires. In fact, the Truth Model can be thought of

as making the entire FET one random variable picked from

an S-parameter database during the Monte Carlo simulation.

However, large S-parameter databases are needed to cover
all of the frequency ranges and bias conditions necessary

for accurate statistical modeling. The Truth Model is not

compact and cannot be scaled to different FET sizes as can

the small signal FET model. Also, the randomness of Monte
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Carlo samples is severely limited by the size of the S-

parameter database. Campbell et al. have suggested database

inte~olation in order to reduce the impact of this limitation.

However, this interpolation results in an even larger database

for random FET selections [9] and does not solve the inherent

problem. Finally, S-parameter database access time must be

considered for a large number of Monte Carlo simulations. In

summary, although the Truth Model is accurate, it limits the

economic feasibility of statistical design due to complexity,

database requirements, and computational inefficiencies.

Purviance et al. suggested statistically characterizing FET’s

through the use of a principal component analysis of the

S-parameters database [10], This solution has many of the

disadvantages of the Truth Model the most important of which

is the large database needed for the statistical modeling at

different frequencies, FET sizes, and biases. However, it will

be shown herein that the principal component technique can

also be applied to the small-signal FET parameters to obtain an

accurate and compact statistical model for circuit simulation

of both noise and S-parameters.

This paper proposes application of the principal compo-

nents statistical technique to a small signal FET equivalent

circuit parameter database. We will show that the correlated

parameters can be easily expressed in terms of uncorrelated

random variables suitable for Monte Carlo analysis. The FET

parameter’s means, standard deviations, and correlations will

be shown to be preserved during a Monte Carlo simulation. An

example of the methodology will be presented for a population

of 300 &m low-noise GaAs FET’s by incorporation of the

principal component technique into a currently available CAD

microwave simulator. Statistical tests presented in this paper

will be used to verify the improvement of simulated FET noise

and S-parameters over the traditional +0 model.

II. PRINCIPAL COMPONENTS

Principal component analysis is a well-known statistical

technique by which a sample data set of n correlated variables

are linearly transformed into a new data set of n uncorrelated,

or orthogonal, variables called principal components [11].

Statistically, correlation is defined as the linear relationship

between two or more variables. Essentially, the principal

component technique rotates the variable axes in order to

obtain data with no linear relationships. Fig. 2(a) shows a

set of data points which obviously have a strong positive

linear relationship which respect to the X and Y coordinate

system. Principal components effectively rotates the axes to

produce a new coordinate system described by F1 and F2.

The data in Fig. 2(b) is uncorrelated when referenced to this

new coordinate system. The same concept can be applied

to an n-dimensional coordinate system of a sample data set

resulting in a new n-dimensional data set referenced to the

orthogonal principal component axes. Mathematically, this

rotation is achieved by determining the eigenvalues of the n x n

correlation matrix of a sample data set. Equation (1) shows

the vector E containing the FET parameter variables from

Fig. 1, the vector F which contains the orthogonal principal

components, A the diagonal eigenvalue matrix, and U a matrix

,,,j.l,*:*x~’
(a) (b)

Fig. 2. Rotation of principal axis by the principal component technique on
a correlated data set.

determined by the eigenvalues and original data. AU-1 is

referred to as the factor pattern matrix because it contains the

coefficients that will be multiplied by the principal components

(factors) to reproduce the original data.

E = AU-IF. (1)

One of the interesting aspects of the principal components

technique is that the first eigenvalue, which corresponds to the

first factor, is the largest since it is oriented in the direction

responsible for most variation in the original data set. The

second eigenvalue is the second largest because it is oriented,

orthogonal to the first, in the direction responsible for the

most of the remaining variation in the original data set. This

continues until the nth eigenvalue explains the remaining

variation. Using all n factors will describe all of the variation

present in the original data. By using the inverse transform of

(1) on each of the extracted FET parameters it is possible to

derive a new data set which is completely orthogonal. Each of

the new uncorrelated variables will be standardized according

to (2) where T is the original data’s mean and SZ is the sample

standard deviation. In other words, the principal component

variables have a mean of zero and standard deviation of one.

By using the standardized uncorrelated data set in (l), the

linear combination of the principal factors will produce the

original data in standardized form. To restore the original FET

parameters from a standardized data point z must be solved

for in (2).

x—z
$~tan&rdlZed = (2)

SE

Most commercial statistical analysis packages will perform

the principal component analysis on a data set. One such

commercial statistical analysis package, SAS, will determine

the new uncorrelated data set from an original data set,

calculate the eigenvalues, cumulative variation explained by

each of the new orthogonal factors, as well as the coefficients

contained in the factor pattern matrix [12]. SAS can also be

used to compute the means and standard deviations needed

to restore the original FET parameters from the principal

components.

Notice that no assumptions have been made of the original

data’s distributions. We may use the new orthogonal data set

as it stands. However, if the original data follows a normal

(Gaussian) distribution, the principal components will also

have a Gaussian distribution because a linear combination of

Gaussian distributions will be a Gaussian distribution. Each
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TABLE I

COMMON MICROWAVE CmcuIT STATISTICAL TESTS AND THEIR ASSOCIATED CUMULATIVE ERRORLEVELS

PairWise a Level

ExperimentWise Intrinsic FET Model S-parameters (2-Port)

Significance 7 means or 21 correlation 8 means or

- -!

28 correlations

Level standard coefficients standard coefficients

deviations deviations

~ — —0.0079 0.0024 0.0064 0,0018

aCU~dtiV,= 0.075 0.0111 0.0037 0.0097 0.0028

Ouln”kltive= 010a 0.0149 0.0050 0.0130 0.0038

Cunl”,ative= 0.15a 0.0229 0.0077 0.0201 0.0058

original PET parameter should be checked for this normality

assumption by a statistical test. If the original data has a Gauss-

ian distribution, or one can be obtained by data transformation,

the derived principal components can be defined as having a

standardized Gaussian distribution with a mean of zero and

standard deviation of one. Equations can then be used to

define the original data variables as a function of the principal

components. This produces automatic interpolation of the

original FET parameter database by simulating combinations

of FET parameters that retain the correlations determined from

the memured data but were never actually measured.

III. STATISTICAL EQUIVALENCE TESTING

Population equivalence testing needs to be done after per-

forming the principal component analysis on the FET ECP

database in order to confirm statistical model accuracy. In the

past, there has been a serious lack of statistical rigor where

modeling examples were shown to “agree well with” [13] or

have “excellent” comparisons [9]. These comparisons of data

are qualitative in nature and subjective at best. This section

discusses the statistical tools that are available to determine

a quantitative level of statistical accuracy when comparing

measured and simulated microwave circuit populations.

There are two types of tests that can be applied to mul-

tivariate populations to determine some level of statistical

equivalence. First, a multivariate distribution test can be used

to determine if two populations are equivalent [14]. This test

is the most accurate but unfortunately not commonly incorpo-

rated into many commercial statistical packages. The second

method is using pair-wise comparisons of each variable’s

marginal density distribution. This does not provide sufficient

conditions for multivariate statistical equivalence [15] except

in the case of the multivariate Gaussian distribution. How-

ever, the pair-wise testing is useful even for non-Gaussian

distributions because it can help identify which variables

of two multivariate distributions are not statistically equal.

Pair-wise testing of the distribution parameters can be easily

achieved with the help of commercial statistical packages in

the absence of a true multivariate distribution equivalence test.

Most statistical texts cover pair-wise statistical testing [16].

The application of these tests to the more common microwave

populations such as S-parameter data sets or ECP sets will be

briefly described here.

Each statistical equivalency test is performed at a predeter-

mined significance level (a) which is the probability of finding

a difference between population statistics when there really is

none. The person performing the test usually wants to keep this

probability quite low, typically 0.05 to 0.1. Unfortunately, if a

population has many different statistics to test, the probability

of making an error accumulates according to (3) where “m”

is the number of variables being pairwise tested

CY.tunulative = 1 — (1 — ~pairwise)m. (3)

For example, suppose a comparison of the means of two

sample sets of S-parameters were to be made. There are four

parameters, S11, S12, S21, and S22, each with a real and

imaginary part. There will be eight means that would need

to be compared to conclude statistical equivalence. In order

to keep the cumulative error small of the entire statistical test,

each pairwise a level must be very low. In fact, the cumulative

error would be 0.57 if each test is performed at an Q = 0.1

level. That is, there would be a 57% chance of making an error

if the S-parameter populations were found to be equivalent. If

the pairwise comparisons were made a{ a a = 0.013 level then

the cumulative error would be 0.1 which is more acceptable.

Table I shows a compilation of suggested pairwise a levels

and their corresponding cumulative a for different types of

equivalence testing which are of special interest to microwave

circuits. Significance levels for smaller or larger FET models

or different size S-parameter networks may be derived in a

similar fashion with (3). It can be seen that very low a-level

pair-wise comparisons need to be made in order to keep the

cumulative error low on any statistical tests.

IV. FET PARAMETER ORTHC)GONALIZATION

This section illustrates the application of the Principal Com-

ponent technique to statistical FET modeling. The methodol-

ogy shown in Fig. 3 was applied to FET’s produced in 1993 at

the Texas Instruments GaAs Foundry in Dallas, TX. Each FET

had four gate fingers and a total periphery of 300 ~m. Fifty-

four FET’s were used from six 100 pm thick GaAs wafers

with low-noise doping profiles. Nornnally. a sample size of

only 54 FET’s would be considered small for characterizing

a FET population. However, the purpose of the study was to

prove the usefulness of this statistical modeling methodology.

Scattering and noise parameter measurements were obtained

over the 0.5 to 26.5 GHz range at 0.5 GHz step intervals at
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TABLE II

MEAN AND STANDARD DEVIATION OF EXTRACTED AND SIMULATED FET PARAMETERS

Mean Standard Deviation

Extracted P.c. *O Extracted P.c. *O

Gm (mS) 92.335 92.152 92.195 5.251 5.160 5.153

Cgs (f-l?) 389.909 388.341 388.401 28.007 27.178 27.230

Ri (Q) 2,594 2.600 2.598 0.312 0.314 0.302

Cds (fF) 79.178 79.219 79.217 2.762 2.696 2.757

Rds (Q) 150.393 149.724 150.302 10.955 10,759 10.719

Cgd (fE) 32.207 32.213 32.147 3.169 3.148 3.202

Tau (ps) 2.520 2.513 2.524 0.224 0.220 0.221

Rg (Q) 0.391 0.395 0.393 0.057 0.056 0.058

Rs (Q) 2.539 2.538 2.547 0.190 0.181 0.191

Rd (Q) 3.678 3.676 3.682 0.173 0.170 0.174

Vn 0.050 0.050 0.050 0.004 0.004 0.004

In 704.704 702.277 708.548 98.364 97.213 96.316

ReCorr -3.088 -3.083 -3.093 0.167 0.163 0.172

ImCorr -0.286 -0.290 -0.282 0.173 0.171 0.175

Rgs (Q) 12388.0 12485.0 12348.2 2875.1 2821.5 2874.6

m

&“[E] + F

(-)’ ?=)+ f-)

Fig. 3. Statistical modeling methodology flow chart.

the drain bias level of 3 V and 30 mA. Each FET’s measured

responses were used to extract the ECP values shown in Fig. 1.

The ten intrinsic and extrinsic parameter values were obtained

by analytical extraction of the FET parameters for each set of

S-parameters similar to Anholt et al. [6] and Golio [17]. The

five noise parameters, including Rg., shown in the Fig. 1 were

obtained by analytical extraction using the Hybrid-Pi noise

model [3]. All ECP’s were optimized to obtain a better fit to

the individual FET measurements. Table II shows the mean

and standard deviation values for all of the fifteen extracted

ECP’S.

All of the FET models were extracted and the commer-

cial statistical analysis package SAS was used to determine

the mean, standard deviation, and correlation matrix of the

FET parameters. Table III shows the extracted database’s

correlation matrix with the statistically nonsignificant values

shaded. Fifty-nine of the 105 correlation coefficients have

a nonzero value when each was tested at an CY = 0.05

significance level. This strongly suggests the assumption of

variable independence inherent to a Monte Carlo analysis

would be violated. SAS was then used to determine the

values in the factor pattern matrix shown in Table IV. The

coefficients in the factor pattern matrix were multiplied by

the principal component vector as shown in (1) to produce

an equation for each of the FET ECP’s. Each of the FET

parameters derived from (1) can be placed in the equation

block of a commercial CAD package such as Touchstone [8].

For example, the resulting expression for Gm is provided in

(4) where ~Gm is the mean and sG~ is the standard deviation

of the measured G~ sample. Of course, the expression for Gm

can then be scaled to the desired FET periphery [4]

G~ = i~n +&~ * (0.808* F1 + 0.412* F2

– 0.006* F3 – 0.050* F4 + 0.323 * F5

– 0.154* F6 + 0.020 * F7 + 0.040 * F8

+ 0.149* F9 + 0.028 * F1O – 0.134* Fll

– 0.003 * F12 + 0.036* F13 + 0.0216 * F14

+ 0.034* F15). (4)

Fig. 4 shows the distribution of Gn values for the extracted

database. The distribution seems to follow a Gaussian distri-

bution although with just 54 samples the shape is not clearly

defined. However, Gm along with all the other ECP variables

each passed a statistical Shapiro-Wilk normality test at an
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TABLE III
.

EXTRACTED FET PARAMETERSCORRELATIONCOEFFICIENTSWITH STATISTICALLYNONSIGNIFICANTVALUES SHADED

Rgs Im Re In Vn Rd Rs

Corr Corr

Gm -0.46 $gj%~ ~-0.39 0.74 -0.67 ~$qj~ j 0.53 -

Cgs

Ri

Cds $,‘ .0.49 ~g$y~~ .0.43 1.00

Rds 0.78 -0.36 1.00

Cgd

Tau -0.31 0.53 0.28 -0.38

Rg

Rs

Rd

Vn

In

ImCorr -0.37 I 1.00 I,, 1

Rgs II 1.00]

TABLE IV
PRINCIPAL COMPONENTFACTOR PATTERN MATRIX EXPLAINING 96.6% OF TOTAL FET PARAMETERVARIATION

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

Gm 0.808 0.412 -0.006 -0.050 0.323 -0.154 0.020 0.040 -

Cgs 0.046 0,822 -0.115 0.142 0.251 -0.009 -0.056 -O.(L!5

Ri -0.493 0.309 0.579 -0.463 -0.030 0.158 -0.129 -0.31[2

Cds 0.386 -0.425 0.559 0.110 0.266 0.202 0.363 -0.3:[3

Rds -0.183 0.850 -0.177 0.317 -0.054 0.185 -0.079 -0.227

Cgd 0.854 -0.232 -0.275 -0.181 -0.251 -0.071 0.015 4).028

Tau -0.383 0.862 0,144 -0.026 0.088 0.103 -0.219 0.068

Rg -0.729 -0.513 0.323 -0.095 0.179 -0.109 -0.031 0.144

Rs 0.639 0.073 0.649 0.169 0.093 0.123 -0.073 0.174

Rd 0.50 -0,082 0.582 0.661 -0.289 -0.297 -0.153 0.0C14

Vn -0.853 0.252 0.040 0.012 -0.296 0.023 0.168 -0.1’76

In 0.956 0.013 -0.095 -0.025 -0.166 -0.040 0.000 -0.044

ReCorr -0.741 0.106 -0.245 0.182 0.314 -0.422 0.184 -0.0:33

ImCorr 0.015 0.735 0.138 0.002 -0.205 0.030 0.560 0.279

Rgs -0.289 -0.488 -0.410 0.464 0.100 0.466 0.011 0.177

~ = 0.05 level of significance[18].This indicates that the

principal components will also follow a Gaussian distribution.

Therefore, the variables F1 through F15 were defined in the

Touchstone “variables” block to have a normal distribution

with mean zero and standard deviation of one [8]. Notice when

the statistical mode of the CAD package is not being used, that

F1 through F15 will be at their nominal value, i.e., zero, and

Gm will equal the mean of the entire FET sample. Also, the

sum of the squares of the principal factor coefficients is equal

to one which forces the standard deviation of G’m to be sG_

during the Monte Carlo simulation.

The entire factor pattern matrix was used in (1) to im-

plement all the FET parameters in terms of the principal

component variables F1 through F15. One thousand samples

were simulated using the Monte Carlo method on the principal

factors and the simulated FET parameters were statistically

analyzed. For comparison, 1000 samples were also simulated

using only the FET parameter’s mean and standard deviation

which assumes independence of the FET parameters (+o

method). Table II shows the means and standard deviations of

the extracted FET parameters, the principal component model

(P.C.) results, and +a model, Both tlhe principal component

model and the +a model are able to a~ccurately reproduce the

mean and standard deviations of the extracted FET parameters.

In fact, both models produced means and standard deviations

statistically equivalent to the original data with a cumulative

~ = ().1 level of error.

A representative example of correlation recovery for the

principal component model, +U mc)del, and the extracted

data is shown in Fig. 5 for the correlation of Cg, with the
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Fig. 5. Comparison of extracted and simulated Cg~ correlation coefficient

with other FET ECP’s.

other FET ECP’s. Fig. 5 demonstrates the principal compo-

nent method recovered all of the measured Cg~ correlations.

Pairwise statistical tests verified that all 105 measured and

principal component simulated correlations were statistically

equivalent at a cumulative a = 0.1 level of error. Fig.5

illustrates the findings of these statistical tests including the

fact that the +0 method is not capable of modeling the FET

parameter correlations because of the parameter independence

assumption. Therefore, the +a method results in simulation

of impossible FET parameter combinations during the Monte

Carlo simulations. These examples show that principal com-

ponents is a superior technique for accurate modeling of FET
ECP statistical variations, Also, it was shown how easily and

quickly the principal component model equations could be
implemented into current commercial CAD products.

Fig. 6 shows that a larger portion of the total variation found

in the original FET database is explained as the number of

Principal Factors used in the model are increased. One hundred

percent of the total variation is represented when the number

of Principal Factors equals the number of original variables.

Notice that the first nine factors explain 97.9’% of the total

cumulative variation in the FET parameters. This creates the

potential to eliminate some of the less significant principal

factors to produce a more compact model for each of the

300. 7

I

I

Number of Principal Factors Considered

Fig, 7. Comparison of principal component model complexity correlation of

G~ and R,.

FET parameters [10]. To see how the number of principal

component terms affect the model’s correlation coefficients,

the number of factors in the Gm principal component model

was varied from all 15 to just the first principal component

factor for a 1000 run Monte Carlo. Fig. 7 illustrates the large

error possible for the simulated correlation coefficient between

Gm and Ri when only a few principal factors are used. As

the number of principal factors is increased the error decreases

until it is statistically negligible. Notice that the error for this

particular correlation coefficient is not strictly monotonic. The

graph also shows the correlation can be adequately preserved
with just nine factors instead of the original fifteen. Reducing

the principal factors in the FET parameter statistical model can

greatly decrease the complexity of the principal component

model for the FET parameters. The number of terms in (4)

could be decreased by approximately 36?Z0using only factors

F1 through F9. A smaller, less complex statistic model

has many benefits such as easier implementation and faster

simulation time.

The 15 ECP principal component equations were used in

the FET model shown in Fig. 1 during a 500 run Monte Carlo

simulation. The S-parameters from each run were stored in a

S-parameter database and were used in comparison with the

original measured S-parameter database to verify statistical
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Fig. 8. Comparison of measured and simulated correlation coefficients:

Correlation of real part of S21 with other FET Responses.

equivalence. Pairwise comparisons were made on the real

and imaginary parts of the S-parameters and noise parameters

which included R., Fmin, and the real and imaginary part of

rOPt. All the measured and principal component simulated

FET response means and standard deviations tested equiva-

lent with an a = 0.05 cumulative error. Fig. 8 depicts the

correlation coefficient recovery for the measured and simulated

FET real part of S21. Fig. 9 illustrates the same for the

imaginary part of the FET’s S21. The other FET reponses are

similar to Figs. 8 and 9 in that the principal component model

recovers the correlation coefficients fairly well. Equivalence

tests between measured and simulated FET responses with

a pairwise a = 0.05 level of error showed that 54 of the

66 FET response correlations coefficients were statistically

equal. Of those which failed equivalence, only two produced

simulated correlation coefficients that were opposite in sign as

the measured values.

A 500 run Monte Carlo simulation was also done using

the traditional to method for a comparison with the prin-

cipal component method. The measured and simulated FET

response means and standard deviations tested equivalent with

a a = 0.05 cumulative error level. Figs. 8 and 9 show

the correlation coefficient recovery for the +0 method as

compared to the measured and principal component data. Both

graphs illustrate that the +0 model produces more signifi-

cantly different correlation coefficients than does the principal

component method. In fact, only 22 out of the 66 correlation

coefficients tested equivalent at an a = 0,05 level of error for

the +rY method of FET response simulation. Therefore, the

*O model produced almost four times as many significantly

different correlation coefficients than the principal component

method. Of the significantly different correlation coefficients,

21 had a sign opposite to that obtained from the measured
FET response database. This means the +a method was over

three times more likely to produce an incorrect sign for those

correlation coefficients that were significantly different. Both

methods, +0 and principal components, failed the cumulative

pair-wise equivalence tests between measured and simulated

FET response correlation coefficients and are therefore not

-? u

(M tj ke[szlj Im(sl 2J lm(S22j F@opi) Rf!

Im(sf 1) Re(SV4) Re@21 NFmin lm@@

Coffekitiin with Imaginary Part of S21

~w~easud HP.C.
m

Fig. 9. Comparison of measured and simulated correlation coefficients:
Correlation of imaginary part of ,S”21 with other FET responses.

statistically equal to the original measured database. However,

it has been shown the principal component method is much

more accurate at simulating the measured database than the

+m model.

There are several reasons why the principal component

model fell short of the goal to produce a statistically equivalent

simulated database. First, there may be inadequate modeling

of the individual FET’s. This may have been caused by not

including the extrinsic inductances in the FET model. The

model optimization during ECP extraction may have also

introduced inaccuracies during the ECP extraction due to local

minima in the error functions. This extraction error could

be indicated by the large percentage variances exhibited by

Rg, Rg,, Ri, In, and Im-Corr all of which have been found

to be difficult to extract. Anholt et al. make an excellent

case suggesting that the quality of the statistical modeling of

the FET is limited by the accuracy of the extraction method

[6]. It is also possible that some of the ECP’s exhibited a

nonlinear relation which would cause errors when modeling

the relation using a correlation coefficient. Correlation is

defined as the linear relation between two variables and cannot

accurately account for nonlinear relationships. This possibility

was examined by producing scatter plots for all the FET ECP

like shown in Fig, 10 for G~ and T,,.. It might be inferred

from Fig. 10 that there is a strong quadratic relationship

present even though the correlation coefficient of 0.05 is

quite low, Quantifying these nonlinear relations is beyond

the scope of this paper but is a problem that will need to

be overcome. Finally, nonnormal distributions for the FET

ECP’s may also be a definite problem because of the Gaussian

assumption during the simulation of the Principal Factors.

Normally, this problem could be diminished through the use

of data transformations to get a more Gaussian distribution.

However, the data presented in this paper covered two different

lots of wafers which caused some of the FET ~CP’s to have

distributions that could have been hi-modal. Larger number

of FET samples would be needed to accurately test for this

possibility. Bi-modal distributions may be caused by process

shifts that will be hard, if not impossible, to model.
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Fig. 10. Scatter plot of G~ and T..: correlation coefficient = 0.05.

V. OTHER APPLICATIONS

FET parameter orthogonalization has also been shown to

pose a better conditioned model fitting problem [19]. Known

correlations between the extracted FET parameters can be

forced on a FET model optimization by using the principal

component equations. Historical FET data or physics based

models could be used for these known correlations. Principal

components can also be applied to design of experiments

(DoE) which requires orthogonal variables. The ability to

reduce the model into a fewer number of principal factors

than the original FET parameters will enhance the usefulness

of FET variation modeling in DoE. Also, statistical population

modeling could be used as a criteria to monitor the validity of

active device parameter extraction. Once a population of FET’s

have been modeled, the methodology illustrated in Fig. 3

could be implemented to model the statistical FET electrical

responses and compare them to the original database. Creating

a statistically equivalent simulated population to a measured

database is much harder modeling problem than representation

of a single active device. Failure to successfully model the

measured FET population could point out processing shifts,

erroneous/nonphysical extraction, or an inadequate electrical

model.

VI. CONCLUSION

Many of the prior works in statistical modeling of FET

S-parameters are difficult to implement into current CAD

software or are inaccurate in representing tie FET population
during Monte Carlo simulations. A new methodology for

statistically modeling the extracted small signal FET param-

eters was developed and demonstrated. This method uses the

principal component technique to orthogonalize the extracted

FET parameters into a new set of variables called Principal

Factors. Equations for the extracted FET parameters can

then be written in terms of a linear combination of the

orthogonal principal components and easily implemented into

current commercial CAD software. The modeling approach

was demonstrated on a small sample of 300 Urn GaAs FET’s

and was statistically tested using techniques discussed in this

paper. The principal component methodology was shown to

preserve the extracted FET ECP’S mean, standard deviation,

and parameter correlations of a high level of statistical sig-

nificance. Using the methodology significantly improved the

ability to statistically model measured S-parameter and noise

FET populations as compared to the assumption of ECP

independence.
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